Yapay Zekânın Ekonomik Etkileri

Yapay zekâ özünde makine öğrenimi, doğal dil işleme, bilgisayar görüşü ve robotik gibi bir dizi teknolojiyi içermektedir. Bu araçlar, sistemlerin büyük miktarda veriyi analiz etmesini, içgörüler çıkarmasını ve otonom kararlar almasını sağlamakta, bu da organizasyonların işlemleri optimize etmelerini, verimliliği artırmalarını ve müşterilere özel deneyimler sunmalarını sağlamaktadır. Dahası, yapay zekânın yayılması yalnızca tek bir sektörle sınırlı kalmamakta, neredeyse modern yaşamın her yönünü sarmalamaktadır. Sağlıkta, yapay zekâ teşhisi desteklemekte, ilaç keşfini ve kişiselleştirilmiş tedavi planlarını sağlamakta, hasta bakımını ve tıbbi araştırmaları devrim niteliğinde değiştirmektedir (Gadde and Kalli, 2021:314). Finansta, yapay zekâ algoritmaları ticaret stratejilerini optimize etmekte, dolandırıcılığı tespit etmekte ve kredi riskini değerlendirmekte, bu da verimliliği artırmakta ve finansal riskleri en aza indirmektedir.

Kaynakça

  • Al Maqbali, K. H., Slimi, Z., & Balasa, A. (2021). The pros and cons of artificial intelligence use in the logistics sector in Oman. European Journal of Business and Management Research, 6(4), 197–208.
  • Ben-Ishai, G., Dean, J., Manyika, J., Porat, R., Varian, H., & Walker, K. (2024). AI and the opportunity for shared prosperity: Lessons from the history of technology and the economy. arXiv preprint arXiv:2401.09718.
  • Bolton, C., Machová, V., Kovacova, M., & Valaskova, K. (2018). The power of human–machine collaboration: Artificial intelligence, business automation, and the smart economy. Economics, Management, and Financial Markets, 13(4), 51–56.
  • Bruun, E. P., & Duka, A. (2018). Artificial intelligence, jobs and the future of work: Racing with the machines. Basic Income Studies, 13(2), 20180018. https://doi.org/10.1515/bis-2018-0018
  • Chan, L., Hogaboam, L., & Cao, R. (2022). Artificial intelligence in manufacturing. In Applied Artificial Intelligence in Business: Concepts and Cases (pp. 173–185). Cham: Springer International Publishing.
  • Coeckelbergh, M. (2019). Artificial intelligence: Some ethical issues and regulatory challenges. Technology and Regulation, 2019, 31–34.
  • Colombo, E., Mercorio, F., & Mezzanzanica, M. (2019). AI meets labor market: Exploring the link between automation and skills. Information Economics and Policy, 47, 27–37.
  • De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K. U., & Von Wangenheim, F. (2020). Artificial intelligence and marketing: Pitfalls and opportunities. Journal of Interactive Marketing, 51(1), 91–105. https://doi.org/10.1016/j.intmar.2020.04.007
  • Floridi, L. (2020). AI and its new winter: From myths to realities. Philosophy & Technology, 33, 1–3.
  • Furman, J., & Seamans, R. (2019). AI and the economy. Innovation Policy and the Economy, 19(1), 161–191.
  • Gadde, S. S., & Kalli, V. D. (2021). Artificial intelligence at healthcare industry. International Journal for Research in Applied Science & Engineering Technology (IJRASET, 9(2), 313.
  • Goyal, A., & Aneja, R. (2020). Artificial intelligence and income inequality: Do technological changes and worker’s position matter? Journal of Public Affairs, 20(4), e2326.
  • Huang, M. H., Rust, R., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43–65.
  • Ibrahim, W. M. R. W., & Hassan, R. (2019). Recruitment trends in the era of Industry 4.0 using artificial intelligence: Pro and cons. Asian Journal of Research in Business and Management, 1(1), 16–21.
  • Kline, R. (2010). Cybernetics, automata studies, and the Dartmouth conference on artificial intelligence. IEEE Annals of the History of Computing, 33(4), 5–16.
  • Korinek, A., & Stiglitz, J. E. (2018). Artificial intelligence and its implications for income distribution and unemployment. In The economics of artificial intelligence: An agenda (pp. 349–390). University of Chicago Press.
  • Kriebitz, A., & Lütge, C. (2020). Artificial intelligence and human rights: A business ethical assessment. Business and Human Rights Journal, 5(1), 84–104.
  • Lorè, F., Basile, P., Appice, A., de Gemmis, M., Malerba, D., & Semeraro, G. (2023). An AI framework to support decisions on GDPR compliance. Journal of Intelligent Information Systems, 61(2), 541–568.
  • Lotan, E., Tschider, C., Sodickson, D. K., Caplan, A. L., Bruno, M., Zhang, B., & Lui, Y. W. (2020). Medical imaging and privacy in the era of artificial intelligence: Myth, fallacy, and the future. Journal of the American College of Radiology, 17(9), 1159–1162.
  • Mutascu, M. (2021). Artificial intelligence and unemployment: New insights. Economic Analysis and Policy, 69, 653–667.
  • O’Leary, D. E. (2019). Google’s Duplex: Pretending to be human. Intelligent Systems in Accounting, Finance and Management, 26(1), 46–53.
  • Nguyen, Q. P., & Vo, D. H. (2022). Artificial intelligence and unemployment: An international evidence. Structural Change and Economic Dynamics, 63, 40–55.
  • Phillips-Wren, G. (2012). AI tools in decision-making support systems: A review. International Journal on Artificial Intelligence Tools, 21(02), 1240005.
  • Pisica, A. I., Edu, T., Zaharia, R. M., & Zaharia, R. (2023). Implementing artificial intelligence in higher education: Pros and cons from the perspectives of academics. Societies, 13(5), 118.
  • Qizi, Q. N. K., Ilxomovna, X. B., & Ogli, G. R. C. (2021). Trends in the development and formation of artificial intelligence in the economy. Academicia: An International Multidisciplinary Research Journal, 11(4), 519–525.
  • Sion, G. (2018). How artificial intelligence is transforming the economy. Will cognitively enhanced machines decrease and eliminate tasks from human workers through automation? Journal of Self-Governance and Management Economics, 6(4), 31–36.
  • Stephens, E. (2023). The mechanical Turk: A short history of ‘artificial artificial intelligence’. Cultural Studies, 37(1), 65–87.
  • Strickland, E. (2019). IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE Spectrum, 56(4), 24–31.
  • Wakabayashi, D. (2016). Google parent company spins off self-driving car business. International New York Times.
  • Waltersmann, L., Kiemel, S., Stuhlsatz, J., Sauer, A., & Miehe, R. (2021). Artificial intelligence applications for increasing resource efficiency in manufacturing companies—a comprehensive review. Sustainability, 13(12), 6689.
  • Xie, M. (2019). Development of artificial intelligence and effects on financial system. Journal of Physics: Conference Series, 1187(3), 032084. IOP Publishing.
  • Yannier, N., Hudson, S. E., & Koedinger, K. R. (2020). Active learning is about more than hands-on: A mixed-reality AI system to support STEM education. International Journal of Artificial Intelligence in Education, 30, 74–96.
  • Zhang, C. A., Cho, S., & Vasarhelyi, M. (2022). Explainable artificial intelligence (XAI) in auditing. International Journal of Accounting Information Systems, 46, 100572.
  • Zhu, C., & Chu, J. (2023). The impact of Chinese big tech on the traditional financial market: Evidence from Ant Group. Electronic Commerce Research, 1–27.